Version 2.1 July 26, 2023 # Upper Class E Traffic Management (ETM) Communication, Navigation, and Surveillance (CNS) Summary Report #### **Developed for:** Federal Aviation Administration Advanced Concepts Branch, ANG-C54 NextGen Technology Development & Prototyping Division 800 Independence Avenue SW Washington, DC 20591 #### **Developed by:** LS Technologies, LLC 490 L'Enfant Plaza SW, #3221 Washington, DC 20024 # **Table of Contents** | 1 | ETM Communications Capabilities | 1 | |----|---------------------------------|----| | 2 | ETM Navigation Capabilities | 5 | | 3 | ETM Surveillance Capabilities | 9 | | Ap | pendix A Acronyms | 12 | ## 1 ETM Communications Capabilities Communication Type A/G Air-to-Ground SB Satellite Based Limitations ¹VHF service volumes defined up to FL600; voice and VDL propagation models indicate sufficient signal strength at 70,000 ft AGL; airborne equipment testing standards are limited to FL700 ²Potential HF voice and HFDL ceilings in upper levels of the ionosphere; actual limits dependent on frequency and signal availability; airborne equipment testing standards are not specified above FL700 ³Potential SATVOICE and SATCOM coverage ceilings based on the lower of two provider constellations; software/hardware limitations may reduce this; airborne equipment testing standards limited to FL700 | | Communications Capabilities | | | | | |--------------------------------------|-----------------------------|--|--|--|--| | Communications
Method | Туре | Advantages | Disadvantages | Upper Class E Traffic
Management (ETM) Feasibility | | | Voice: Very High
Frequency (VHF) | Air-to-
Ground
(A/G) | Used by the Federal Aviation
Administration (FAA) and
industry for decades Established infrastructure | Radio line of site between transmitter and receiver is required, which may affect coverage Potential signal interference outside of Frequency Protected Service Volumes (FPSVs) Does not support oceanic operations (requires ground infrastructure) Testing standards for airborne equipment only specified to Flight Level (FL) 700 | May be able to use in lower ETM environment due to potential signal availability up to 70,000 ft Above Ground Level (AGL) Civilian variant of the Global Hawk Uncrewed Aircraft System (UAS) was equipped with a VHF/UHF voice relay for operations above FL600 | | | Voice: Ultra High
Frequency (UHF) | A/G | Used by the U.S. military and supported by the FAA for decades Established infrastructure | Channels reserved for military aviation Radio line of site between transmitter and receiver is required Potential signal interference outside of FPSVs Does not support oceanic operations Testing standards for airborne equipment only specified to FL700 | Not feasible for commercial aviation | | | | Communications Capabilities | | | | | |-------------------------------------|-----------------------------|---|--|---|--| | Communications
Method | Туре | Advantages | Disadvantages | Upper Class E Traffic
Management (ETM) Feasibility | | | Voice: High
Frequency (HF) | A/G | Signal range is greater than
VHF/UHF capability Supports international airspace
beyond VHF range | Not approved for use over land in the U.S. if VHF communications are available Signal may not be available due to sporadic nature of ionospheric layers Testing standards for airborne equipment only specified to FL700 | Availability of the HF signal
would theoretically be greater in
the ETM environment | | | Voice: Satellite
(SATVOICE) | Satellite-
Based
(SB) | Global coverage via networks of
satellites in Low Earth Orbit
(LEO) and Geostationary Earth
Orbit (GEO) Unaffected by ionospheric
changes | Possible latency issues Not approved for use over land in the U.S. Testing standards for airborne equipment only specified to FL700 | Viable and presently in use by UAS Could be problematic with supersonic and hypersonic aircraft due to speed limitations (potential doppler shift above Mach 1.4 to Mach 1.66 depending on service provider) | | | Data: VHF Data
Link (VDL) | A/G | Provides air traffic service data messages in airport and some en route environments Reduces communication errors and radio congestion Increases communication efficiency Established support infrastructure | Limited to continental use Does not permit real-time communications like voice Coverage affected by proximity to ground facilities | • Theoretically, signal strength should be sufficient to 70,000 ft over corresponding ground infrastructure | | | | Communications Capabilities | | | | | |---|-----------------------------|--|---|---|--| | Communications
Method | Туре | Advantages | Disadvantages | Upper Class E Traffic
Management (ETM) Feasibility | | | Data: HF Data
Link (HFDL) | A/G | Complements VDL and Satellite
Communications (SATCOM)
through 15 ground stations to
extend communication coverage Newer onboard HF data systems
can search for best available
signal Supplements SATCOM in polar
regions and provides data link
backup | Still some unpredictable signal reception Lowest data transfer rate Not approved for data link over domestic U.S. | Availability of the HF signal
would theoretically be greater in
the ETM environment | | | Data: Satellite
Communications
(SATCOM) | SB | Provides worldwide data
communications coverage Higher data transfer rate than
VDL and HFDL | Not approved for use over land
in the U.S.Possible latency issues | Viable and presently in use for
UAS command and control data Speed limitations similar to
SATVOICE | | ## **2** ETM Navigation Capabilities #### Navigation Type AB Aircraft Based GB Ground Based SB Satellite Based . | #### Limitations ¹Devices are not generally required to operate above FL500; however, many systems are expected to function up to FL600 ²One operator obtained approval and used high altitude pressure altimeters that functioned to FL700 ft based on extrapolated Air Data Computer / barometric altimeter error requirements ³Limited to "High" installations where transmitters are located at sufficient heights above ground level GPS Terrestrial Service Volume (TSV) upper bound; altitude provided by GNSS is not approved for use as a primary means of vertical navigation | | Navigation Capabilities | | | | | |---|---------------------------|--|--|---|--| | Navigation
Method | Туре | Advantages | Disadvantages | ETM Feasibility | | | Pressure
Altimetry | Aircraft
Based
(AB) | Required for operations While devices are not generally required to operate above FL500, some systems have been certified for use between FL500 and FL600 (e.g., business jets and Concorde) At least one commercial pressure altimeter was approved for use up to FL700 | Errors increase as altitude and/or speed increases Minimal certification above FL600; test criteria for standards do not exceed FL500 It is generally believed that most traditional civilian systems do not provide useful information above FL600 Beyond FL800, it is possible that atmospheric density is too low to support accurate pressure altimetry measurements | One operator demonstrated that modern high-altitude barometric units can support repeated, global operations up to FL700 Some military barometric altimeters were also required to indicate pressure altitude up to FL800 per MIL-STD-8439 (now cancelled) | | | VHF Omni-
Directional
Range (VOR) | Ground
Based
(GB) | Wide ranging coverage with established infrastructure supported by the FAA Able to withstand jamming and spoofing Many have available signal up to at least 60,000 ft (AGL) | Normal range up to 60 degrees in elevation angle (cone-of-confusion) Provides only azimuth information; altitude and distance information still required for comprehensive navigation Nearby objects may cause an erratic indication System and infrastructure are costly Decreased accuracy as distance increases; poor accuracy in comparison to Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) | VOR is potentially viable for lower
ETM airspace Limited to "High" installations where
transmitters are located at sufficient
heights above ground level | | | | Navigation Capabilities | | | | | |---|----------------------------|---|---|--|--| | Navigation
Method | Туре | Advantages | Disadvantages | ETM Feasibility | | | Distance
Measuring
Equipment
(DME) | GB | Wide ranging coverage with established infrastructure supported by the FAA Able to withstand jamming and spoofing Many have available signal up to at least 60,000 ft (AGL) | Provides only distance information; altitude and azimuth information still required for comprehensive navigation Decreased accuracy as distance increases; poor accuracy in comparison to GPS/GNSS | DME is potentially viable for lower ETM airspace Limited to "High" installations where transmitters are located at sufficient heights above ground level DME/DME (using two or more DMEs to determine aircraft location) may be the best existing GB navigation system for lower ETM operations | | | Tactical Air
Navigation
System
(TACAN) | GB | Wide ranging coverage supporting commercial and military navigation; established infrastructure supported by the FAA Able to withstand jamming and spoofing Many have available signal up to at least 60,000 ft (AGL) | Azimuth information limited to
military aircraft Decreased accuracy with increased
distance from ground stations; poor
accuracy in comparison to
GPS/GNSS | It is possible TACANs may be used for some ETM operations Limited to "High" installations where transmitters are located at sufficient heights above ground level | | | Global
Positioning
System (GPS) | Satellite
Based
(SB) | Decades of use supporting commercial and military navigation Key enabler of the NextGen program Satellite signal continuously available up to altitudes of 3,000 km | Vulnerable to jamming, spoofing, and solar activity International Traffic in Arms Regulations (ITAR) mandate that airborne GNSS receivers be disabled at speeds exceeding 600 m/s (~Mach 2.03) | All ETM operations traveling less than Mach 2.03 should be able to employ GPS navigation in the horizontal dimension Used by one operator for navigation and surveillance of flights up to FL700 Used for Global Hawk planned missions and flight tests between 65,000 ft and 67,500 ft (respectively) | | | | Navigation Capabilities | | | | | |---|-------------------------|---|---|---|--| | Navigation
Method | Туре | Advantages | Disadvantages | ETM Feasibility | | | Space Based
Augmentation
System
(SBAS) | SB | Widespread use in civil aviation Improves GPS accuracy and integrity Provides alerts if significant GPS issues are detected Wide Area Augmentation System (WAAS) coverage up to 100,000 ft for the region encompassing the Contiguous U.S. (CONUS), Alaska, Hawaii, the Caribbean islands, and a large portion of oceanic airspace | Vulnerable to jamming, spoofing, natural interference Subject to the same ITAR restrictions as standard GNSS | All ETM operations traveling less than Mach 2.03, operating up to 100,000 ft within an appropriate coverage volume should be able to employ WAAS navigation in the horizontal dimension | | | Inertial
Navigation
System (INS) | AB | Established technology
(present since the 1940s) Completely self-contained Operates at any altitude Not subject to jamming or
spoofing | Gyro drift errors that accumulate over time can render INS position untrustworthy | Well suited for ETM operations as
there is no upper altitude limit for
use; however, other technologies
(e.g., DME/DME) may be needed to
compensate for errors | | ## 3 ETM Surveillance Capabilities #### Surveillance Type AB Aircraft Based **GB** Ground Based SB Satellite Based #### Limitations ¹Potential limit of 2D WAM based on traditional pressure altimeter performance and system configuration ²ASR coverage limited to roughly 25,000 ft by automation software (e.g., altitude filters) 3 Some ARSR installations are capable of coverage up to $100,000\,\mathrm{ft}$; dependent on valid pressure altitude ⁴ADS-C installations are postulated to provide reliable aircraft positions up to the limit of traditional pressure altimeters (60,000 ft) ⁵Version 3 1090ES ADS-B optionally supports altitude to roughly 1,000,000 ft; however, vehicles traveling more than 600 m/s are subject to ITAR restrictions | | Surveillance Capabilities | | | | | |--|---------------------------|--|---|---|--| | Surveillance
Method | Туре | Advantages | Disadvantages | ETM Feasibility | | | Radar
(Airport
Surveillance
Radar (ASR)
and Air Route
Surveillance
Radar (ARSR)) | GB | Most of CONUS covered by radar surveillance at 18,000 ft Some ARSR capabilities to 100,000 ft Less susceptible to jamming or spoofing Secondary Surveillance Radar (SSR) provides critical input to Air Traffic Control (ATC) automation systems | Position errors increase with range Velocity errors can be significant, notably in turns (radar lag) Dependency on commercial barometric altimeters, many of which do not function well above 60,000 ft Coverage of oceanic airspace limited to coastal regions/areas surrounding select islands Coverage limited by software (e.g., 25,000 ft for some ASRs) | Historical Concorde operations at the boundary of Class A and upper Class E airspace were surveilled by long-range radars while supersonic, albeit with limitations Upper Class E airspace coverage exists, but can be limited based on pressure altimeter, software, and hardware constraints | | | Wide Area
Multilateration
(WAM) | GB | Phase 2 WAM operational in
Charlotte, NC, and Los Angeles, CA;
Phase 1 installations in CO and AK
are being transitioned to Phase 2 Provides accurate surveillance in
areas that preclude radar deployment
(e.g., mountainous terrain) Phase 2 corrects pressure altitude with
weather forecast data | Phase 2 systems are not configured to provide surveillance above 60,000 ft Horizontal position accuracy worsens at higher altitudes Coverage represents a fraction of total area surveilled by radar and Automatic Dependent Surveillance – Broadcast (ADS-B) | Coverage of operations in transit to/from ETM airspace may be possible Phase 2 WAM limited by system configurations and pressure altimeter constraints | | | Automatic
Dependent
Surveillance –
Broadcast
(ADS-B) | AB | International adoption of 1090 MHz Extended Squitter (1090ES) technology Space-based variant offers potential for worldwide surveillance | Oceanic surveillance is limited
(SBS ground-based system) Update rates are reduced in high
1090 MHz interference
environments (dense airspace) | Commercial vehicles that operated up to FL700 employed ADS-B with valid altitude measurements | | | | Surveillance Capabilities | | | | | |---|---------------------------|---|---|--|--| | Surveillance
Method | Туре | Advantages | Disadvantages | ETM Feasibility | | | | | V2 (most common deployment) coverage ceiling of 126,750 ft based on altitude encoding limits V3 coverage ceiling extended to roughly 1,000,000 ft with additional support for supersonic and hypersonic velocities | ITAR restrictions apply at speeds greater than Mach 2.03 (e.g., state data may not be populated) Potential barometric altimeter limitations above FL600 impact pressure altitude reported through 1090ES and Universal Access Transceiver (UAT) Geometric altitude provided by V3 messages up to roughly 1,000,000 ft is not approved for separation Susceptible to jamming and spoofing | Most vehicles traveling less than
Mach 2.03 in ETM airspace
could employ ADS-B with a
dependency on accurate pressure
altitude reporting | | | Automatic
Dependent
Surveillance –
Contract
(ADS-C) | AB | Provides surveillance in oceanic and remote continental regions Established input to Advanced Technologies and Oceanic Procedures (ATOP) automation system Theoretical surveillance coverage up to 60,000 ft, subject to service provider and automation filters and/or configurations and pressure altimetry constraints Enhanced ADS-C is being considered for reduced oceanic separation minima | Not approved for tactical separation Does not provide coverage over the poles Lowest achievable update interval is 64 seconds; the lowest update interval required for minimum separation in oceanic airspace is currently 10 minutes Fees incurred by operators based on message frequency Greater latency in comparison to other surveillance capabilities | May be a feasible surveillance mechanism in the lower ETM environment with appropriate altimetry; however, service provider and automation configurations may limit coverage | | # **Appendix A Acronyms** | Acronym | Definition | |---------|--| | AB | Aircraft Based | | ADS-B | Automatic Dependent Surveillance – Broadcast | | ADS-C | Automatic Dependent Surveillance – Contract | | AGL | Above Ground Level | | AK | Alaska | | ARSR | Air Route Surveillance Radar | | ASR | Airport Surveillance Radar | | ATC | Air Traffic Control | | ATOP | Advanced Technologies and Oceanic Procedures | | CA | California | | СО | Colorado | | CONUS | Contiguous United States | | DME | Distance Measuring Equipment | | ETM | Upper Class E Traffic Management | | FAA | Federal Aviation Administration | | FL | Flight Level | | FPSV | Frequency Protected Service Volume | | ft | Feet | | GB | Ground Based | | GEO | Geostationary Earth Orbit | | GNSS | Global Navigation Satellite System | | GPS | Global Positioning System | | HF | High Frequency | | HFDL | HF Data Link | | INS | Inertial Navigation System | | ITAR | International Traffic in Arms Regulations | | LEO | Low Earth Orbit | | МН | Megahertz | | NC | North Carolina | | SATCOM | Satellite Communications | | Acronym | Definition | |----------|---------------------------------| | SATVOICE | Satellite Voice | | SB | Satellite Based | | SBAS | Space Based Augmentation System | | SBS | Surveillance Broadcast Services | | SSR | Secondary Surveillance Radar | | TACAN | Tactical Air Navigation System | | UAS | Uncrewed Aircraft System | | UAT | Universal Access Transceiver | | UHF | Ultra High Frequency | | VDL | VHF Data Link | | VHF | Very High Frequency | | VOR | VHF Omni-Directional Range | | WAAS | Wide Area Augmentation System | | WAM | Wide Area Multilateration |